skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palermo, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper focuses on the abilities of the Large High-Performance Outdoor Shake Table (LHPOST6) at UC San Diego to investigate the combined effects of realistic near-field translational and rotational earthquake ground motions applied as dynamic excitation to 3-D and large- or full-scale structural, geotechnical, or soil-foundation-structural systems. The LHPOST6 supports the advancement of innovative materials, manufacturing methods, detailing, earthquake protective systems, seismic retrofit methods, and construction methods, and is a driving force towards improving seismic design codes and standards and developing transformative seismic-resistant concepts. This paper provides: (i) a brief overview of the 6-DOF capabilities of the LHPOST6 facility; (ii) an overview of the research projects conducted so far at the LHPOST6 facility focusing on the performance of the facility, and (iii) new seismic research opportunities enabled by the LHPOST6 to provide data and fragility information on structural and geotechnical systems that can support the full realization of performance- and resilient-based seismic design. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026